TI OMAP Drivers (now with 4470) - 8.9" Kindle Fire HD Android Development

I modified a little bit omap_winusb.inf file for existing TI OMAP Drivers and now it supports OMAP4470 CPU too.
I just added only some lines for OMAP4470 device ID like:
Code:
%USB_OMAP4470% = USB_Install, USB\Vid_0451&Pid_d012
This driver can be installed on Windows x86 and x64 as well. I hope it will help somebody to make an unbricker for my Kindle Fire HD 8.9 (now it can be detected only like an OMAP4470 device).
Drivers attached to this post.

Woonder.ua said:
I modified a little bit omap_winusb.inf file for existing TI OMAP Drivers and now it supports OMAP4470 CPU too.
I just added only some lines for OMAP4470 device ID like:
Code:
%USB_OMAP4470% = USB_Install, USB\Vid_0451&Pid_d012
This driver can be installed on Windows x86 and x64 as well. I hope it will help somebody to make an unbricker for my Kindle Fire HD 8.9 (now it can be detected only like an OMAP4470 device).
Drivers attached to this post.
Click to expand...
Click to collapse
Do you know how to use this driver mode?
adb code ? or fastboot code?

I know that this driver can be used in download mode (for example, to load external boot via USB cable and fix internal one). However I don't know how to use it programmatically.

Just a guess it`s for usb boot just like in the usage for firekit for the first gen kindle.

Exactly. However, I know no one tool, which can be applicable to flash OMAP4470 device in Windows. May be OMAPflash tool can do this, but I don't know how.

I wonder if there a chance of a windows based firekit for second gen devices. Although sadly windows is very crappy with these sort of applications, drivers and such.

I don't think so, because I know a lot of android devices on another processors, which supports flashing through download mode in Windows, even Samsung Galaxy Nexus (edition with OMAP processor). For example, my primary smartphone is JIAYU G2 based on MTK6577, and it can be flashed through download mode with battery removed - MediaTek distributes firmware tool for vendors only, but it was spread to destination users extremely fast because vendors don't want to make their own flash tools for fastboot/adb mode. So, I think it is possible indeed, but we need a right tool for flashing. And I know that Texas Instruments has such tool, but it is distributed only for device manufacturer.

I was goijg through firekit and found that there is binary named usbboot
Since I have no experience with original kindle I little bit skeptical about this binary
Is it provided by amazon/ti
Or is it built by pokey
In any ways is there same binary or method to boot KHFD 8.9
Sent from my GT-N7100 using xda app-developers app

kanchan.n.mahajan said:
I was goijg through firekit and found that there is binary named usbboot
Since I have no experience with original kindle I little bit skeptical about this binary
Is it provided by amazon/ti
Or is it built by pokey
Click to expand...
Click to collapse
usbboot website
kanchan.n.mahajan said:
In any ways is there same binary or method to boot KHFD 8.9
Click to expand...
Click to collapse
Quoted from a PM...
Pokey9000 said:
When the OMAP USB boots, it first waits a bit to handshake with a host. If the handshake is successful, the host sends a small loader to the OMAP that then does some hardware init and handshakes again with the host to get a payload to shove into RAM. This loader is similar to x-loader in that it has to be small enough to fit in the SRAM of the OMAP, and does low level initialization like mux, clock, and memory setup. However it differs in that it replaces the MMC and FAT handling in x-loader with USB loading as there's not enough room for a generic x-loader that does MMC and USB.
On HS OMAPs, this initial USB loader payload must be signed just like x-loader has to be for eMMC boot. If the payload doesn't have a signature that checks out, the OMAP halts until it's reset. This is enforced by hardware, so short of finding a sploit in the OMAP ROM code or a copy of Amazon's USB boot tools used in factory it's not going to work.
Click to expand...
Click to collapse
In short...no.

soupmagnet said:
usbboot website
Quoted from a PM...
In short...no.
Click to expand...
Click to collapse
Do you know how to download usbboot?
and how to use it???
Thanks!

Has anyone had any luck in recovering an 8.9 HD stuck in omap only mode?

In theory: Need a compatible usbboot/aboot which can bring up some kind of bootloader to enable fastboot for reflash all original partitions.
The reality: I'm not sure at what point the signature checks would be enforced. If usbboot needs to be signed to even load.. then it's dead.

Hashcode said:
In theory: Need a compatible usbboot/aboot which can bring up some kind of bootloader to enable fastboot for reflash all original partitions.
The reality: I'm not sure at what point the signature checks would be enforced. If usbboot needs to be signed to even load.. then it's dead.
Click to expand...
Click to collapse
Much appreciated Hash. I guess he is better off ditching it on eBay for parts or praying Amazon will replace it for him.

Related

Hardware security

Supposedly the first stage bootloader is now authenticated by the boot ROM. Is this true?
Microsoft is using the same Secure Boot technology they are supporting for Windows 8. This means that the UEFI on the device does a cryptographic check on the Bootloader which in turn does the same to the kernel.
In essence: even if you could get the system to flash a custom bootloader it would be rejected by the UEFI upon boot unless it was signed with the Platform Key.
For Details I suggest you look into the information available on Microsoft's Secure Boot technology.
StevieBallz said:
Microsoft is using the same Secure Boot technology they are supporting for Windows 8. This means that the UEFI on the device does a cryptographic check on the Bootloader which in turn does the same to the kernel.
In essence: even if you could get the system to flash a custom bootloader it would be rejected by the UEFI upon boot unless it was signed with the Platform Key.
For Details I suggest you look into the information available on Microsoft's Secure Boot technology.
Click to expand...
Click to collapse
How is the UEFI firmware on an ARM chip stored? This sounds like a bit of a BIOS-like system is now used.
Or rather, is the UEFI code stored in a special place on the SoC?
Bump.
I actually don't have an answer for that one. Perhaps looking into how it is done on the PC is comparable, perhaps it isn't. On the PC UEFI pretty much is the replacement for the old BIOS.

[Q] XT890's Medfield SoC architecture

(I know this thread maybe should belong to Development forum, but I'm posting here since I don't have enough posts to discuss there yet)
I'm in the second year of Computer Science, being a dynamic/interpreted languages programmer for over 6 years now, C/C++ for 2 years.
I have a solid understanding on the x86 PC architecture: interrupts, buses, etc. I'm pretty good at basic x86 assembly... Been studying UEFI for over a month... Whatever.
I've lost the past couple hours searching but didn't find anything on the architecture of our device. Is the "Bootloader" here compared to a BIOS? Or is it like any PC bootloader (MS-DOS, Windows, Linux bootloaders). Is there anything like a BIOS at all or does the OS, once booted, manages all the hardware interrupts by itself? Can I use INT 10H on XT890? Is it ANYTHING close to the PC architecture?
PCI, ISA, (parallel and serial) "ports" managed by a chipset between the peripherals and the x86 core itself?
Ok, it's x86. Once the system has booted, we can call x86 instructions, ok... But what is under that? Is there any reference on this? How can I boot my own code, if it's not Linux?
I really got nowhere trying to learn about the architecture underneath Android and Motorola's Bootloader on Medfield. Found nothing on Intel nor Motorola websites. What am I doing wrong?
Thanks in advance!
I'm studying this myself but there is a lot that i need to learn. Check those to see if helps.
http://bootloader.wikidot.com/android
http://elinux.org/Android_Booting
http://www.ibm.com/developerworks/linux/library/l-linuxboot/
I would like more info about the RAZR I as well, considering it's the only mainstream phone with a x86 processor I'd expect more documentation about it, I am receiving a RAZR I soon.
For what I know, it's boot process is similar to other Android devices, it loads and decompresses a boot.img file that includes a ramdisk and the kernel, you should be able to load another non-linux OS by chainloading a secondary bootloader there, I honestly would like to see more development on the Razr i, specifically to get native Gnu-linux with x11 running
Using @thiagomtl's links, I was able to understand a little more about the Boot process. XT890 seems to have basically the same mechanics of the ARM ones, but x86 tuned.
However I'm yet to understand the differences between "normal" Linux bootstrapping and the Android Bootloader's one.
On a average legacy Linux box we have GRUB/LILO on the MBR. Making a hell of a simplification here: The user turns the PC on, BIOS does the POST and then loads whatever code is on the MBR. GRUB is a very small program there, which simply loads a driver for the storage device, loads vmlinuz and the f*ing ramdisk on the memory and executes it (effectively by simply pointing the IP to the address where the kernel is on the memory).
Samuelgames said:
I would like more info about the RAZR I as well, considering it's the only mainstream phone with a x86 processor I'd expect more documentation about it, I am receiving a RAZR I soon.
For what I know, it's boot process is similar to other Android devices, it loads and decompresses a boot.img file that includes a ramdisk and the kernel, you should be able to load another non-linux OS by chainloading a secondary bootloader there, I honestly would like to see more development on the Razr i, specifically to get native Gnu-linux with x11 running
Click to expand...
Click to collapse
But the Boot process is just a part of my original question. Ok, a important one, but a part.
What about the structure of the device? How it's all implemented? Is the display using plain old VESA VBE? Are the input devices PS/2? USB? Is the power implemented using ACPI standards? lol
As far as I'm concerned Atom SoC doesn't respect many industry standards for the architecture, even for those who run Windows 8, buttons on the Razr I should be naturally be defined as GPIO as the notification LED, I don't think the display respects VESA standards (SGX 540 can't even do scaling) but it should fallback to them at some extent depending on how you initialize the framebuffer.
All of this should be in the Motorola kernel, I haven't taken a look at it but I'll surely will once I get my phone
@Hazou, @YaPeL, @Omar-Avelar
you guys know anything about this?
Ok this is all i know about it by searching through the code and internet and by finding out myself (no sources included, just my memory). It's all linux, nothing like Windows.
Kernel:
We indeed are making a x86 kernel, but not for normal PC's. We use the mid-x86 implementation within the x86 code of the kernel. (arch/x86/platform/mid-x86) MID is the intel word for all the socs for mobile platforms intel is using. The normal upstream linux doesn't provide all the necessary code. And is has changed with the new android version 4.4.2 for our device.
Boot sequence:
The android devices use some sort of bootloader. Droidboot. Droidboot includes the fastboot commands and starts the bringup of the android system. You can read about it on the internet. In most devices (ARM) it is the first thing thats get called for.
Our intel device is a little different. Before the droidboot gets loaded the firmware of the device loads another OS. Also called POS (i think preprocessor OS, or something). Those gets updated with the dix and efwi(wrong name) files we got. The POS can be accessed by booting in the medfield download through the camera button, if i am correct. The POS then loads the droidboot which will in turn load the rest, like a linux device which loads from the bootloader.
The partition layout can be found in the gpt.bin. It can be flashed through fastboot and can change every partition afaik.
So the boot order is:
1. POS/RADIO
2. DROIDBOOT
3. BOOT.IMG is like linux. First the kernel then the ramdisk with the kernel modules.
4. ANDROID
To comment about the JB implementation.
We can build our own kernel and we can, if we want and take the time, upgrade the kernel to the newest version (for android is that 3.10, but we should be able to manage to go fully upstream 3.17). But that takes a lot of time.
I also noticed that, from what i heard, some kernel modules specific for our device has changed and now the kernel that we have can't load the new firmware files in 4.4. So we will need the next kernel from Moto to compile our own when 4.4.2 is released. Those changed are not upstream.
Hazou said:
The POS then loads the droidboot which will in turn load the rest, like a linux device which loads from the bootloader.
The partition layout can be found in the gpt.bin. It can be flashed through fastboot and can change every partition afaik.
So the boot order is:
1. POS/RADIO
2. DROIDBOOT
3. BOOT.IMG is like linux. First the kernel then the ramdisk with the kernel modules.
4. ANDROID
Click to expand...
Click to collapse
This is the most interesting part for hundreds of us. Is there a way we can find what sectors are used for the pos so we can possibly repair code corrupt?
I have a feeling the gpt is messed up so any amount of writing to the dnx or ifwi will be in the wrong location.
I can't find any information on this phone at all.
I think it's time I bought a spare mobo and dumped everything to compare a broken to working
Flacid Monkey said:
This is the most interesting part for hundreds of us. Is there a way we can find what sectors are used for the pos so we can possibly repair code corrupt?
I have a feeling the gpt is messed up so any amount of writing to the dnx or ifwi will be in the wrong location.
I can't find any information on this phone at all.
I think it's time I bought a spare mobo and dumped everything to compare a broken to working
Click to expand...
Click to collapse
If i am correct they are present on the partition layout of the phone. I just don't know wish ones are the right ones. Never looked good enough at that.
Also to repair the gpt and write the dnx or ofwi to the right location u need a dd command or flash command with the right parameters. The flash command most likely won't work because of the gpt partition and the DD command wont either because most of the time u don't have access to a recovery anymore.
But my knowledge about this is limited, so if u dare to put your phone on the line and have maybe the knowledge and skills to do what some people need, please do I can't and need my phone working
Hazou said:
If i am correct they are present on the partition layout of the phone. I just don't know wish ones are the right ones. Never looked good enough at that.
Also to repair the gpt and write the dnx or ofwi to the right location u need a dd command or flash command with the right parameters. The flash command most likely won't work because of the gpt partition and the DD command wont either because most of the time u don't have access to a recovery anymore.
But my knowledge about this is limited, so if u dare to put your phone on the line and have maybe the knowledge and skills to do what some people need, please do I can't and need my phone working
Click to expand...
Click to collapse
Skills/knowledge = limited. I'm no programmer but I take information in like a 100 petabyte SSD.
My phones knackered, I'm trying to fix it but it's not easy! If it's fixed, I'll break it again to make sure the fix works :good:
It's going to be a long road, there is zero success since the first report of code corrupt.
As you say, I need the right param. There's almost no information about it anywhere and what information is about is very fragmented.
I'll keep you updated
Flacid Monkey said:
Skills/knowledge = limited. I'm no programmer but I take information in like a 100 petabyte SSD.
My phones knackered, I'm trying to fix it but it's not easy! If it's fixed, I'll break it again to make sure the fix works :good:
It's going to be a long road, there is zero success since the first report of code corrupt.
As you say, I need the right param. There's almost no information about it anywhere and what information is about is very fragmented.
I'll keep you updated
Click to expand...
Click to collapse
I am almost certain it can be fixed as long as it is a software failure (some maybe have a hardware failure). As this seems one of them it should be fixable as long as your BL is unlocked. With a locked bootloader u don't stand any chance (nah, maybe with medfield flasher, but that one is also limited).
Take a look at the acer padphone or something. Dunno how it is called exactly. Is also uses the intel SOC and makes use of the medfield flasher.
I never had a phone thats corrupt so can't say much about it, but i can help with thinking my way through. If u have that problem can u boot in fastboot or is that even impossible? I know we can flash the POS and fastboot through xfstk. So with the right combination it should work. And if not we can try flash the modem as extra if that is possible. But do know it can hard-brick the device (modem, lowest thing of the device) of-course, aldo u don't have much choice now
Another thing, because fastboot (and even recovery) can flash the dix, ifwi and bootloader files. I 'assume' xfstk (that can also flash the ifwi, dix and bootloader) can flash the whole emmc with indeed the right parameters. We have the source code of the fastboot/recovery ifwi, dix and bootloader flasher. Also called update_osip.
So think it out, i will wait and see.
uart console
Has somebody tried to access a uart console on our razr-i? would be nice for debugging.
Intels datasheet says the board has 3 uart ports. http://ark.intel.com/products/70097
I hope one uart port can be accessed via usb or audio jack. Like on this device: http://forum.xda-developers.com/showthread.php?t=1081743
Or is it only possible with opening the phone and looking for jtag pins?

KFHD7 bricked with Uboot authentication failed

Hi,
I have a bricked x43z60. It does not turn on at all.it was bricked using this method:
http://rootkindlefire.com/kindle-fi...t-kindle-fire-hd-8-9-into-pure-android-tablet
I've shorted the usb boot pads and now when I connect the usb cable the device get recognized as OMAP4440 for a few seconds and disconnects.
I've soldered an USB-FTDI cable to the Rx Tx pad. In minicon I get the following output:
PPA supports 4460 1.x only
Detected device: 04460e11 HS
PPA 1.8.2 hash 27d8da40
Build Date: Aug 3 2012 Time: 17:39:44, ONLY PUBLIC DEBUG ON
!OBFUSCATOR ON!
SEC_STATUS = 000379a2
Production Build
Free space for PPA: 3396 bytes
The PPA is about to free 2356 bytes
Memory initialization...start
**## ddr_density 0x18 ...
ddr 1cs detected ...
Texas Instruments Inc X-Loader 1.41.0-g6178feb2 (Jun 24 2013 - 17:38:46)
OMAP4460: 1.2 GHz capable SOM
U-boot Signature Authentication...
>>>> Signature verification failed!(lv_Return=0x00000001)
Error, Uboot authentication failed.
X-Loader hangs
---------------------------------------------------
I tried to flash signed uboot like otter2-u-boot-prod-10.2.4.bin with usbboot tool but it hangs at "waiting for 2ndstage response..." at this point in the UART console I see the that the device tries to boot and hangs at the xloader again.
I do get some data back from the device before it tries to boot like:
CHIP: 4440
IDEN: abe2e556b3bebcc53db3c19df3e7cab9b84d9eab
MPKH: 1efc5375b48ba984056286d5fb6d85fd38e63a29a9ff21ee31afffd35c0c8c5e
CRC0: 229e85ba
CRC1: dc5874bc
It means that the device DO receives the id signal and responds to it but I can't tell if it processes the boot signal or loads the file to memory.
I've searched all over the place...Where can I get a properly signed u-boot file?
Thanks,
Vadim
Sounds like you know a lot about hardware modification. It's all alien to me
I hate to tell you this, but I don't think there are no signed u-boot files. The only ones that exist are Amazon's, and they are definitely not going to leak those out to the likes of us. Until they do, there's no way of fixing a brick like that
This thread here might explain more.
Ph0enix_216 said:
Sounds like you know a lot about hardware modification. It's all alien to me
I hate to tell you this, but I don't think there are no signed u-boot files. The only ones that exist are Amazon's, and they are definitely not going to leak those out to the likes of us. Until they do, there's no way of fixing a brick like that
This thread here might explain more.
Click to expand...
Click to collapse
There are no hardware modification. Just some debugging.
I don't really want to install custom roms or something, I just want that thing to work. The boot loaders on the device are already signed, so the ones that come with an update file. Can I (or someone with a working device) dump the bootloader from the device? Can I extract it from the update file?
vadimbrk said:
There are no hardware modification. Just some debugging.
I don't really want to install custom roms or something, I just want that thing to work. The boot loaders on the device are already signed, so the ones that come with an update file. Can I (or someone with a working device) dump the bootloader from the device? Can I extract it from the update file?
Click to expand...
Click to collapse
It's still more than I could understand:cyclops:
If you want to try extracting it from the update, you can download it straight from Amazon's website. Just rename it from whatevertheynameit.bin to whatevertheynameit.zip and use 7zip to extract.
The boot loader is already dumped and available in the updates mentioned above, the problem with trying to do what you are trying to do if I remember right is that you also need a signed xloader or something that is pushed and launched before the boot loader can be, and I think that isn't something you can dump because it doesn't exist on the kindles emmc, otherwise we would have had this method working a long time ago, though it does work on kf1's. Though I thought from what you have in the logs it sounds like it might not be xloader I'm thinking of, but I thought the boot loader was referred to as u-boot. Anyways sorry I don't know much more about what I'm talking about. I noticed you mentioned otter2, if you want to give it a shot otter2 is kf2, if you look in the android development section for kf2's, there's a method for unhardbricking it, but it requires a USB sdcard reader and being very good at soldering. Look for the thread by kurohyou.
Sent from my Amazon Kindle Fire HD running CM10.1 Tablet UI using xda-developers app
stunts513 said:
The boot loader is already dumped and available in the updates mentioned above, the problem with trying to do what you are trying to do if I remember right is that you also need a signed xloader or something that is pushed and launched before the boot loader can be, and I think that isn't something you can dump because it doesn't exist on the kindles emmc, otherwise we would have had this method working a long time ago, though it does work on kf1's. Though I thought from what you have in the logs it sounds like it might not be xloader I'm thinking of, but I thought the boot loader was referred to as u-boot. Anyways sorry I don't know much more about what I'm talking about. I noticed you mentioned otter2, if you want to give it a shot otter2 is kf2, if you look in the android development section for kf2's, there's a method for unhardbricking it, but it requires a USB sdcard reader and being very good at soldering. Look for the thread by kurohyou.
Sent from my Amazon Kindle Fire HD running CM10.1 Tablet UI using xda-developers app
Click to expand...
Click to collapse
The xloader is fine. Its the u-boot who's got corrupted. I've extracted the x loader and u-boot from the update bin. Still can't boot from it.
This is an OMAP 4460 HS(High Security) chip, I can't find any documentation to see if it supports booting from USB in this TrustZone secure state.
The usb booting option is almost offered by this device, they even made a marked pad for it....
Another option may be booting from serial using pserial and ukermit. It may offer more flexibility in the security checking crap....
In order to get into serial boot mode we need to locate the SYSBOOT pins. They located in the chip at:
GPIO 184 F26 0 SYS_BOOT0 SYSBOOT Input 0
GPIO 185 E27 0 SYS_BOOT1 SYSBOOT Input 1
GPIO 186 E26 0 SYS_BOOT2 SYSBOOT Input 2
GPIO 187 E25 0 SYS_BOOT3 SYSBOOT Input 3
GPIO 188 D28 0 SYS_BOOT4 SYSBOOT Input 4
GPIO 189 D27 0 SYS_BOOT5 SYSBOOT Input 5
They should have pullup resistors externally on the main board. If some one have a dead board with some free time and a heat gun that can pull the chip out and trace those pullup resistors....
I've managed to get the device in serial download mode by sending 0xF0034306 to the device right after the Get ASIC ID command(from modified usbboot) and then upload the u-boot file using pserial(via UART connection). The file get uploaded and then the device "freezes" for a minute or so until it restarts and spitting the " Signature verification failed!" error again.
vadimbrk said:
The xloader is fine. Its the u-boot who's got corrupted. I've extracted the x loader and u-boot from the update bin. Still can't boot from it.
This is an OMAP 4460 HS(High Security) chip, I can't find any documentation to see if it supports booting from USB in this TrustZone secure state.
The usb booting option is almost offered by this device, they even made a marked pad for it....
Another option may be booting from serial using pserial and ukermit. It may offer more flexibility in the security checking crap....
In order to get into serial boot mode we need to locate the SYSBOOT pins. They located in the chip at:
GPIO 184 F26 0 SYS_BOOT0 SYSBOOT Input 0
GPIO 185 E27 0 SYS_BOOT1 SYSBOOT Input 1
GPIO 186 E26 0 SYS_BOOT2 SYSBOOT Input 2
GPIO 187 E25 0 SYS_BOOT3 SYSBOOT Input 3
GPIO 188 D28 0 SYS_BOOT4 SYSBOOT Input 4
GPIO 189 D27 0 SYS_BOOT5 SYSBOOT Input 5
They should have pullup resistors externally on the main board. If some one have a dead board with some free time and a heat gun that can pull the chip out and trace those pullup resistors....
Click to expand...
Click to collapse
If I'm understanding right, the OMAP drivers are showing in device driver? I don't think anyone has got the KFHD to work after this. If I'm understanding the situation properly that is. That would be some history right there.
Sent from my Amazon Kindle Fire HD running CM 10.2 using xda app-developers

[Workshop] Unbrick fully bricked I9070

Hi,
I'm launching this thread to work on an unbrick procedure for fully bricked I9070/P without JTAG or Riffbox (same as Adam Outler, TheBeano, Odia etc... 's project "let's save some bricks")
Reminder : fully bricked = no download/recovery mode, no display, not charging, not going to recovery with a 301k Ohm jig.
I have a fully bricked I9070P and a fully functionnal I8090 (same processor).
Based on the sources and tools for the U8500 that were disclosed in january, I've managed to make my dead phone and my PC talk "a bit" together (under Windows with the VSIW tool, and under linux with recompiling the "flashkit" tools): when plugged in and inserting the battery, the tool sees the terminal, gets its serial number and various data and fails while trying to send and execute a boot file because the terminal closes the USB port.
I've managed to get a certain degree of communication with the "riff" tool (open source) of the Snowball project too (the dev board based on a U9500).
Based on this half successes, I'm pretty sure we are close to a clean solution to revive a fully bricked terminal without soldering JTAG.
Here are the main docs I've read so far :
* most posts from the threads "let's save some bricks" and "fun with resistors"
* the reference documents of the I9070 (Samsung_GT-I9070_Galaxy_S_Advance_Galaxy_S_II_Lite_service_manual.rar)
* the reference manual of the U9500 (http://www.calao-systems.com/reposi...X/DATASHEETS/AP9500_reference_manual_rev1.pdf)
* TSU6111 datasheet from TI (the USB/UART switch the 9070 is using, cf the service manual -> Lite Schematics -> u-USB SW IC part)
* lots of docs from the "flashkit" sources
My setup :
* a fully bricked I9070P
* a fully working I8190P
* an 8GB SDCard
* a Windows/Linux workstation (Ubuntu 12.04LTS + Android compiling environment + disclosed sources)
* terminal emulators
* a Prolific cable (PL2303) (any USB to TTL adapter would do it, you can buy one for 3$ as Arduino accessory, or reuse a Nokia DKU 5 -see hackaday website for a link). Take care with Prolifics : they don't work under Windows 8 with the last driver, you have to use the version before, Google is your friend)
* a set of resistors
* a multimeter
* libusb win32 drivers setup, see sourceforge (use the tool included in the drivers package to generate the right .inf file for the U8500 (or use 04CC and 8500)
Here are my conclusions so far :
* based on the Snowball docs and the U9500 spec, we don't seem to have any need to modify anything (resistors) on the mainboard to change boot sequence. The dev board does not have any switch for that and my dead I9070 and working I8190 exibit the same behaviour at bootup : the appear as a "U8500 USB ROM" for a seconds and disconnect when going on farther in the boot sequence.
Moreover, the fact that I managed to have my dead phone talk with the flashtool confort me in the fact that we are almost done.
* I have *not* managed to get any output on my terminal with my Prolific cable plugged in with a 630kOhm resistor on the pins 4 and 5. My resistor setup might be good because it make my working I8190 boot when I plug it in.
But I'm not sure of my RX/TX setup, I have crossed the RX/TX of the phone and the ones of the Prolific but I might have been wrong identifying the pins of my modified USB plug (D+ and D-).
But I'm sure the RX and TX wires of my Prolific are the right ones : when I connect them together (nullmodem configuration), the characters typed on my terminal are displayed.
So the main issue is : how can we have the dead phone keep the USB port open and not close it after 2 seconds?
My assumption is that it is always probing different boot methods (UART, USB, MMC etc) and then attempts to boot normaly from eMMC.
I don't know which part of the bootchain sequence I've garbaged on my I9070: IBL, PBL, SBL, PARAM? Managing to get any debug output on my console would greatly help me.
Has any of you tried to achieve something similar? If yes, could you post your setup and results?
Let's save some bricks another time!
any progress
flentus said:
Hi,
I'm launching this thread to work on an unbrick procedure for fully bricked I9070/P without JTAG or Riffbox (same as Adam Outler, TheBeano, Odia etc... 's project "let's save some bricks")
Reminder : fully bricked = no download/recovery mode, no display, not charging, not going to recovery with a 301k Ohm jig.
I have a fully bricked I9070P and a fully functionnal I8090 (same processor).
Based on the sources and tools for the U8500 that were disclosed in january, I've managed to make my dead phone and my PC talk "a bit" together (under Windows with the VSIW tool, and under linux with recompiling the "flashkit" tools): when plugged in and inserting the battery, the tool sees the terminal, gets its serial number and various data and fails while trying to send and execute a boot file because the terminal closes the USB port.
I've managed to get a certain degree of communication with the "riff" tool (open source) of the Snowball project too (the dev board based on a U9500).
Based on this half successes, I'm pretty sure we are close to a clean solution to revive a fully bricked terminal without soldering JTAG.
Here are the main docs I've read so far :
* most posts from the threads "let's save some bricks" and "fun with resistors"
* the reference documents of the I9070 (Samsung_GT-I9070_Galaxy_S_Advance_Galaxy_S_II_Lite_service_manual.rar)
* the reference manual of the U9500 (http://www.calao-systems.com/reposi...X/DATASHEETS/AP9500_reference_manual_rev1.pdf)
* TSU6111 datasheet from TI (the USB/UART switch the 9070 is using, cf the service manual -> Lite Schematics -> u-USB SW IC part)
* lots of docs from the "flashkit" sources
My setup :
* a fully bricked I9070P
* a fully working I8190P
* an 8GB SDCard
* a Windows/Linux workstation (Ubuntu 12.04LTS + Android compiling environment + disclosed sources)
* terminal emulators
* a Prolific cable (PL2303) (any USB to TTL adapter would do it, you can buy one for 3$ as Arduino accessory, or reuse a Nokia DKU 5 -see hackaday website for a link). Take care with Prolifics : they don't work under Windows 8 with the last driver, you have to use the version before, Google is your friend)
* a set of resistors
* a multimeter
* libusb win32 drivers setup, see sourceforge (use the tool included in the drivers package to generate the right .inf file for the U8500 (or use 04CC and 8500)
Here are my conclusions so far :
* based on the Snowball docs and the U9500 spec, we don't seem to have any need to modify anything (resistors) on the mainboard to change boot sequence. The dev board does not have any switch for that and my dead I9070 and working I8190 exibit the same behaviour at bootup : the appear as a "U8500 USB ROM" for a seconds and disconnect when going on farther in the boot sequence.
Moreover, the fact that I managed to have my dead phone talk with the flashtool confort me in the fact that we are almost done.
* I have *not* managed to get any output on my terminal with my Prolific cable plugged in with a 630kOhm resistor on the pins 4 and 5. My resistor setup might be good because it make my working I8190 boot when I plug it in.
But I'm not sure of my RX/TX setup, I have crossed the RX/TX of the phone and the ones of the Prolific but I might have been wrong identifying the pins of my modified USB plug (D+ and D-).
But I'm sure the RX and TX wires of my Prolific are the right ones : when I connect them together (nullmodem configuration), the characters typed on my terminal are displayed.
So the main issue is : how can we have the dead phone keep the USB port open and not close it after 2 seconds?
My assumption is that it is always probing different boot methods (UART, USB, MMC etc) and then attempts to boot normaly from eMMC.
I don't know which part of the bootchain sequence I've garbaged on my I9070: IBL, PBL, SBL, PARAM? Managing to get any debug output on my console would greatly help me.
Has any of you tried to achieve something similar? If yes, could you post your setup and results?
Let's save some bricks another time!
Click to expand...
Click to collapse
dude did you find any solution??same problem here
up up this thread.... i'm also experiencing with my s3 mini i8190 continuously disconnecting libusb-win32 driver... my phone is at deadboot and unable to resurrect with RIFFBOX...
neilPD_07 said:
up up this thread.... i'm also experiencing with my s3 mini i8190 continuously disconnecting libusb-win32 driver... my phone is at deadboot and unable to resurrect with RIFFBOX...
Click to expand...
Click to collapse
Mebay u have dead mini USB port in SIII mini ?
Sent from my GT-I9070 using Tapatalk
Hi guys,
I had a little time playing with this, but I have good news :
I modified the default profile used for the flashtool backend to "ADL boot" : my "dead" phone now stays connected to the USB and is reported as "started" by the flashtool CLI ("flash-tool get_connected_equipments") however, when I try some "active" flash-tool CLI commands, the backend crashes.
As I was running it either in windows 8.1 64 bits or Linux in a VM, their might have some bad interactions with the OS on the one hand and the USB port forwarding on the other hand (there was issues with the LCD and LCM drivers in Windows, I grabbed the 64 bits ones from VSIW...).
-> I have to test on a 32 bit Windows.
Good to read to understand further (extracted from flash-tool-backend.html file) :
Note : ME stands for mobile equipment, "boot indication" can take the following values : ADL, ALT, Normal, Production, Programming : set into the config files pointed by the .mesp file)
Boot process description
When the peripheral boot sequence starts, the ME sends an asic id to the connected PC tool. The PC tool then answers with a boot indication. If normal, "ADL" or "production" is sent as boot indication; this means that the x-loader will start the binary software stored at the corresponding location in the boot image (based on the location stated by the TOC). If programming is used as boot indication, the PC will send a completely new set of boot code to the ME. This is used when a loader is downloaded during service mode startup via the Flash Tool Backend. When the normal boot indication is sent, Flash Tool backend sends no more data and the ME is booted with the binary software stored in the place where the normal software is stored according to the TOC.
The ADL boot scenario works like this:
1. Flash Tool Backend receives asic id
2. Boot indication ADL is sent
3. Flash tool backend starts LCD and LCM and waits for a loader startup message.
The loader is stored at the ADL location of the boot image (this is supported by the assemble tool).
I think I'd have to assemble the correct bootloader to enable "profile-STE_DBX500_flashloader.prfl" profile to work (we are missing corresponding loader.ldr loader). It would enable the use of the "LoaderCommunication"
I think I have all the pieces and the docs (we even have the certificates to sign it !): just need time and a better GFAF (Girlfriend acceptance factor).
The guys who managed to unbrick some Qualcomm based devices might be of a huge help, they would be much more efficient than I can be... I any of you have time to drive them around here, do not hesitate!
Enjoy!
flentus said:
Hi guys,
I had a little time playing with this, but I have good news :
I modified the default profile used for the flashtool backend to "ADL boot" : my "dead" phone now stays connected to the USB and is reported as "started" by the flashtool CLI ("flash-tool get_connected_equipments") however, when I try some "active" flash-tool CLI commands, the backend crashes.
As I was running it either in windows 8.1 64 bits or Linux in a VM, their might have some bad interactions with the OS on the one hand and the USB port forwarding on the other hand (there was issues with the LCD and LCM drivers in Windows, I grabbed the 64 bits ones from VSIW...).
-> I have to test on a 32 bit Windows.
Good to read to understand further (extracted from flash-tool-backend.html file) :
Note : ME stands for mobile equipment, "boot indication" can take the following values : ADL, ALT, Normal, Production, Programming : set into the config files pointed by the .mesp file)
Boot process description
When the peripheral boot sequence starts, the ME sends an asic id to the connected PC tool. The PC tool then answers with a boot indication. If normal, "ADL" or "production" is sent as boot indication; this means that the x-loader will start the binary software stored at the corresponding location in the boot image (based on the location stated by the TOC). If programming is used as boot indication, the PC will send a completely new set of boot code to the ME. This is used when a loader is downloaded during service mode startup via the Flash Tool Backend. When the normal boot indication is sent, Flash Tool backend sends no more data and the ME is booted with the binary software stored in the place where the normal software is stored according to the TOC.
The ADL boot scenario works like this:
1. Flash Tool Backend receives asic id
2. Boot indication ADL is sent
3. Flash tool backend starts LCD and LCM and waits for a loader startup message.
The loader is stored at the ADL location of the boot image (this is supported by the assemble tool).
I think I'd have to assemble the correct bootloader to enable "profile-STE_DBX500_flashloader.prfl" profile to work (we are missing corresponding loader.ldr loader). It would enable the use of the "LoaderCommunication"
I think I have all the pieces and the docs (we even have the certificates to sign it !): just need time and a better GFAF (Girlfriend acceptance factor).
The guys who managed to unbrick some Qualcomm based devices might be of a huge help, they would be much more efficient than I can be... I any of you have time to drive them around here, do not hesitate!
Enjoy!
Click to expand...
Click to collapse
Any good updates & tested solution sir? I'm still waiting for a big solution for this kind of problem... TIA
Hi !
well, I'm almost done with the bootloaders: I have a loader.ldr compiled + 2 bin.
I've reset my dev. env. to an Ubuntu 10.04 according to a .doc I found in the sources (search for "*.doc", you will find "getting_Started_with_Android_and_Linux.doc"): I now have far less compilation errors, but I'm still struggling to get the full compilation process just right. For eg. I had to remove the "alsactrl" component due to dependency issues I've not been able to solve.
As already stated, I'm far from being a dev. expert so it takes me a lot of time to acheive the right compilation.
I would highly need the help of s/b who is fluent with Android compilation/dev env.: first it would be necessary to establish how to merge correctly the disclosed sources with Google's sources + the open sources from Samsung (kernel + system) (we have duplicates here as the kernel is also available in the disclosed sources, but both are different releases).
As already stated, given the few spare tile I have and without the help of the right people this will take me ~4 months+ to have this unbrick done (if I face no deadlock).
So, if you want this faster: get the right guys on the forum (from the "dev" branches) and drag them here so we can go forward much faste!
Hi!
So, I think I'm getting close: I now have the boot files build procedure working (+kernel and sytem, but I don't need those).
When I try to boot my phone with those boot files using the "flasher -tXXXX -X0,normal.bin" command, it seems that they are rejected as the phone connects and disconnects (boot loop on the iRom startup, I believe).
So, now I really need to have some kind of debug console setup to understand what's going on (cause of rejection, like signature problem etc...):
I've been working blindly up to now hopping that the software would work "off the shelves"... it never does
I'll have to try to understand how the "trigger UART" parameter of flashkit backend works and what is it intended to (I'll have to read the code for that as I've never seen any explanation about it anywhere in the docs). I don't figure out how this could work as on the backend GUI it lists the host PC's serial ports...
Another option would be to have my FTDI debug setup working. Maybe it's not "another option" but is required if the "trigger UART" is just enabling UART debug on the phone and requires a debug cable to read these debug data. My problem in that case would be how to have USB *and* UART on the same port... unless all this is designed for dev targets that have 2 USB ports as the Calao's u8500 targets. In that case, i'd have to find something smarter
As usual, if someone with knownledge on all this is willing to help: wave your hand, I'd happy to share my researches and go forward much faster. But I really feel I'm alone on this (even if I know that there will be tons of leechers when/if I manage to have this work
That's life on XDA!
Nice nice
flentus said:
Hi!
So, I think I'm getting close: I now have the boot files build procedure working (+kernel and sytem, but I don't need those).
When I try to boot my phone with those boot files using the "flasher -tXXXX -X0,normal.bin" command, it seems that they are rejected as the phone connects and disconnects (boot loop on the iRom startup, I believe).
So, now I really need to have some kind of debug console setup to understand what's going on (cause of rejection, like signature problem etc...):
I've been working blindly up to now hopping that the software would work "off the shelves"... it never does
I'll have to try to understand how the "trigger UART" parameter of flashkit backend works and what is it intended to (I'll have to read the code for that as I've never seen any explanation about it anywhere in the docs). I don't figure out how this could work as on the backend GUI it lists the host PC's serial ports...
Another option would be to have my FTDI debug setup working. Maybe it's not "another option" but is required if the "trigger UART" is just enabling UART debug on the phone and requires a debug cable to read these debug data. My problem in that case would be how to have USB *and* UART on the same port... unless all this is designed for dev targets that have 2 USB ports as the Calao's u8500 targets. In that case, i'd have to find something smarter
As usual, if someone with knownledge on all this is willing to help: wave your hand, I'd happy to share my researches and go forward much faster. But I really feel I'm alone on this (even if I know that there will be tons of leechers when/if I manage to have this work
That's life on XDA!
Click to expand...
Click to collapse
U R great man..UP UP UP :good::good::good:
use UART debug on USB
This will help me, I'll test it on my working S3 mini (same proc and very similar HW)... when I have time...
-> this will validate my UART debug setup : http://forum.xda-developers.com/showthread.php?t=2100809
ok, UART debug up and partially running on my SIII mini: debug messages displayed on terminal but keystrokes do not reach the phone, this is secondary for me at the moment, I may have a bad contact somewhere.
Tested on my dead I9070: no display, so the Xloader on my eMMC is garbaged (or Xloader UART debug is disabled, but this is less likely).
As expected, I now have to figure out how to have flashloader boot files upload *and* debug working together to understand what's wrong with my compiled boot files. I think the "trigger UART" thing is a good track, but I'm really puzzled by how to have the USB *and* the UART setup at the same time.
I fear to fry something by having phone D+/D- connected to USB port of the PC and connected at the same time to my Prolific TxD/RxD + 5V VCC connected to PC USB... sounds like a bad thing.
Another track would be USB debug I see in some parts of the code, but I don't know how to read the debug from there, more code to inspect...
got it~
---------- Post added at 02:03 PM ---------- Previous post was at 01:22 PM ----------
I also have a fully bricked I9070( not I9070P).I`m waiting for your good news.Thanks first.
I received this PM, I believe it can be useful for others experimenting with it
flentus said:
Ola Paul,
I contact you on an advise from Cocafe.
I launched a while ago the thread "[Workshop] Unbrick fully bricked I9070" (http://forum.xda-developers.com/showthread.php?t=2701363)
I'm looking for help to acheive the task as I don't have very much time to spend on it due to huge work I have this year.
Would you be ok to participate if you have a little spare time and interest in it?
I think I'm very close to the solution, and this would help a lot of 9070 owners (and maybe SIII mini and Sony too).
As explained in my thread, I have difficulties getting the disclosed sources to build correctly up to the end when integrated with Google SDK. As a result the "finalizing" scripts (that gather the binaries and tidy the "out" directory) don't execute: I end up with a large mess and STE tools don't work out of the box. I have to gather the pieces one by one to have them run which is very time consuming and error prone.
I can say that the recovery process won't need any kind of soldering, wiring or whatever: just a regular USB cable and the right sofware.
The disclosed sources contain everything we need: PBL/SBL sources, signing tool+certificates, the software to talk to the iROM + various documentation.
The problem is just a question of assembling the pieces...
My idea is to assemble an Xloader (PBL) + Uboot (SBL) + recovery and boot from that to execute recovery.
The "flashkit" tool enables this process, I quote the docs: "If 'programming' boot indication is used as boot indication, the PC will send a completely new set of boot code to the ME. This is used when a loader is downloaded during service mode startup via the Flash Tool Backend.".
Tell me if you wish to help me, or if you know someone who has competencies and would wish to!
I speek average spanish if you prefer to exchange in this language.
Regards
Click to expand...
Click to collapse
I am sorry for pointing this out, STE tools wont work ever on i9070, the reason being that we do not have a STE bootloader, heck, most of the low level stuff do not resemble the ST-Ericsson Montblanc development board. You can't even change the bootloader arguments, you can only add to them (the way I first enabled SELinux), the Samsung Bootloader version that we have may be not as restrictive as others, but Sonys bootloader resembles more to STE's than ours.
The only way you may found how to restore it is accessing the JTAG mode (something that is determined only if JTAG is connected and recognized) and depends solely on the emergency bootloader (if that exists, because I am not sure how the device powers on without PBL), the "seconds" of power you get on the USB is the device looking for JTAG.
The "disclosed" sources are for ST-Ericsson devices
Something you should do, is analyze the structures of /dev/block/mmcblk0p10, which contains our partition table (GUID Partition Table - GPT).
Simple way of doing it, you have to do dd if=/dev/block/mmcblk0p10 of=/sdcard/janice.pit on terminal emulator, this is ROM agnostic, because the structures are the same on both stock and any custom ROM. Of course, that is from a working device, I'll do that and drop it here later since I am working on something else right now, and thanks diegoch for discovering this.
Anyway, as diego pointed to me, our partition table is like this.
PIT, CSPSA, EFS, MODEM fs, SBL, SBL2, PARAM, IPL modem, MODEM, Kernel, Kernel2, system, data, cache, preload, fota, sdcard
This is the correct order I believe, since basically, when you use ODIN and use a PIT file, the partition table gets rewritten according to whatever is on that .pit file. So PIT is basically the GPT partition table; obviously SBL is the Samsung bootloader, and SBL2 I believe it's either stage 2.5 or a backup of the first.
So, no clue by going the STE way, something familiar here.
So, I may say something good at the end, see if the i9100 guys ever did it, and go from there, since our device is largely based around i9100 (Galaxy S II)
Hi Paul,
thanks for your contribution.
A few replies/questions :
* you state that Montblanc dev board and I9070 are completly different: isn't the aim of dev dev board to be close to ME while adding extra connectors to ease debug and interfacing for prototyping? Calao dev board looks very close to I9070: I have compared the schematics and component list: they look very very much alike. For me, NovaThor U8500 plateform consists of a DB8500 SoC, a Mali 400, a built-in modem + chips for USB, audio and SIM operations.
So, to me, I may be wrong, at least the processor (u8500), PLL, eMMC, SDRAM, UART + several low level controlers should be the same. As we are trying to work at such level (just trying to get the basic system to boot to just enable eMMC write), don't we have a chance to manage to have those work (maybe with adressing adaptation, those might be tough)?
* I can't agree with you that "the "seconds" of power you get on the USB is the device looking for JTAG.": on boot time, even without trashed PBL, the ME connects to USB properly with vendor/ID=04cc/8500, and sends its ASIC ID (displayed on PC screen). As stated earlier in the thread, I manage to send some commands and receive response from the ME in this state using STE tools (flashkit_cli, sending commands threw flashkit_backend).
It's definetly not any JTAG stuffs. JTAG on the I9070 is accessible on the mainboard via dedicated pads, you can locate using the light schematics provided in the "Service manual" package.
This early boot behaviour is documented in the "flash-tool-backend.html" document (available in s-4.1_vendor_st-ericsson.tar in ./s-4.1_vendor_st-ericsson/vendor/st-ericsson/tools/platform/flash_kit/flash_tool_backend/com.stericsson.sdk.backend.build/doc):
Boot process description
When the peripheral boot sequence starts, the ME sends an asic id to the connected PC tool.
The PC tool then answers with a boot indication.
- If normal, ADL or production is sent as boot indication; this means that the x-loader will start the binary software stored at the corresponding location in the boot image (based on the location stated by the TOC).
- If programming is used as boot indication, the PC will send a completely new set of boot code to the ME. This is used when a loader is downloaded during service mode startup via the Flash Tool Backend.
- When the normal boot indication is sent, Flash Tool backend sends no more data and the ME is booted with the binary software stored in the place where the normal software is stored according to the TOC.
The ADL boot scenario works like this:
1. Flash Tool Backend receives asic id
2. Boot indication ADL is sent
3. Flash tool backend starts LCD and LCM and waits for a loader startup message.
The loader is stored at the ADL location of the boot image (this is supported by the assemble tool).
* If I understand well, as we don't have the sources for the bootloader, your proposal is to grab one from a working device.
That sounds a really good idea!
Here is the complete partition table/PIT of the I9070 (recovered by someone with a Riff box from a GB archive, if I remember well):
(copy/paste it in a traditional editor and add padding to recover the table).
Partition number Filename in archive Name in PIT starting offset HEX Size in bytes HEX
MBR, GPT 0 20000
STE_boot.bin TOC ISSW XLOADER 20000 60000
mmcblk0p10 GT-I9070P_EUR_XX_8G.pit PIT 80000 100000
mmcblk0p6 cspsa.img CSPSA FS 180000 180000
EMPTY 300000 100000
mmcblk0p7 EFS.img EFS 400000 A00000
mmcblk0p2 modemfs.img MODEM FS E00000 100000
mem_init.bin STE MEM INIT 1E00000 80000
power_management.bin PWR MGT 1E80000 80000
mmcblk0p14 normal.bin SBL 1F00000 200000
mmcblk0p16 normal2.bin SBL_2 2100000 200000
mmcblk0p1 param.lfs PARAM 2300000 1000000
mmcblk0p12 ipl.bin IPL MODEM 3300000 200000
mmcblk0p13 modem.bin MODEM 3500000 1000000
mmcblk0p15 kernel.bin KERNEL 4500000 1000000
mmcblk0p17 kernel2.bin KERNEL2 5500000 1000000
mmcblk0p3 system.img SYSTEM 6500000 26400000
mmcblk0p5 userdata.img DATAFS 2C900000 80000000
mmcblk0p4 cache.img CACHEFS AC900000 13200000
mmcblk0p9 hidden.img HIDDEN BFB00000 14000000
mmcblk0p11 ssgtest.img FOTA D3B00000 3200000
mmcblk0p8 ums.rfs UMS D6D00000 FAA00000
--> PBL corresponds to "TOC ISSW XLOADER" (STE_boot.bin in the flash archive) and SLB to normal.bin. So basically we have our boot files. We can extract them from the GB flash archive or from a ROM dump (I have dd'ed every partitions from 2 different I9070P + a full recovery dump from a 9070 provided by Riff box support files I found once I don't remember where).
So, if I have time one of theses days, I'll try to build a flash archive based on these files and try to boot from STE tools on it using "programming" as boot indication.
* Using the knowledge of the I9100 (Galaxy S II): I'm afraid this is a very different hardware, I9100 uses an Exynos 4210, so I hardly see what we could use from there... Could you give us some more advise on that idea?
Regards
Hi!
I had no time working on this for a while: extremely busy at work.
Maybe this weekend...
@cocafe: I've read you know how to extract the initramfs from the kernel, modify, repack, and reflash it. I'll need to do that to modify the "on boot" section of the init.rc to launch the recovery from standard boot. Could you drop me here the command lines to do that? Thanks in advance!
This looks by far the most advanced research into bringing back a hard bricked i9070.
@flentus Did you manage to upload a new bootloader?
Hi,
had to time at all to play with this for a loooong time.
I have grabed a few new phones so me 9070 is now burried deep into a drawer but I really wish to finish this one day because I feel I'm very close to something.
If anybody would like to take over this, feel free, I can provide support for the stuff I have understood (and remember of...)
Regards

[Q] Installing Linux Mint 17 on tf701t?

Hello, recently purchased a asus tf701t laptop/tablet hyrbid and the device itself is perfect. Powerful cpu, good storage and an insane 2k resolution for a 10' inch screen which I don't think has been done before.
However I absolutely hate android (no offense to android developers) and decided to try installing Linux Mint 17 which can be installed on any regular laptop easily. Essentially, I want to get rid of both android bootloader and the OS itself and replace that with Grub bootloader and Linux Mint 17 OS. But android is fighting me every step of the way trying to prevent me from doing just that I unlocked the bootloader so my warrenty is void now.
But beyond that I can't install linux iso because the android bootloader isn't registering the usb stick (with linux iso on it) so I can't launch the linux live iso at all. I tried using cdrom iso using disk to launch through usb and still doesn't come up in the bootloader options. I know its possible to use linux on these devices because I've seen people have done it before on the internet.
I am now at this point starting to consider android itself as malware as the very definition of the word, ....lets start with the fact that they locked the bootloader, prompting me to give ip address just to enable me to unlock the bootloader (malicious and very dodgy). No root access therefore, third party programs are required to enable root which further my belief that android os is more malware than it is a legitimate operating system. Lastly, either possibly no usb driver for bootloader or usb port is locked out by design at bootloader (either way, might explain why I can't use usb linux iso).
What I can't understand is, why google can lock down a device tighter than fort knox on a Asus brand device. This is like buying a brand new car and not being able to open your own car even though you purchased it. What google has done is borderline illegal and I'm abit astonished how they can get away with it...
Sorry for the rant guys I'm abit fustrated atm. Can anyone please help me? I really love linux mint and if its possible to format android and install linux mint on this device I would be eternally grateful
Update: I attempted to flash the device with the command: fastboot -i 0x0B05 flash recovery recovery.img which works...but when I reboot and push power and down volume into bootloader...and try to get into recovery...the screen looks like its about to load into it but then resumes boot of android.
I'm really puzzled by this. So cannot flash a custom recovery for some strange reason
Its not so simple I dont think. You might want to watch whats happening on this thread for now.
http://forum.xda-developers.com/transformer-tf701/general/native-linux-asus-tf701t-t2973119
I would think you would have to completely replace the bootloader with something like uboot maybe if you wanted to wipe the tablet. But I dont think anyone knows. Then you could end up with some permanent brick. There would be no recovery or fastboot option if you were somehow able to get some kind of boot loader on this thing. I have no idea.
Edit: Also there is no arm based Linux Mint afiak.
YayYouFixedIt said:
Its not so simple I dont think. You might want to watch whats happening on this thread for now.
I would think you would have to completely replace the bootloader with something like uboot maybe if you wanted to wipe the tablet. But I dont think anyone knows. Then you could end up with some permanent brick. There would be no recovery or fastboot option if you were somehow able to get some kind of boot loader on this thing. I have no idea.
Edit: Also there is no arm based Linux Mint afiak.
Click to expand...
Click to collapse
Thanks I appreciate the reply. I understand this won't be easy but I'm stubborn that way
Can you give me some advice on where I can start learning how to place a native linux os on the device? Would grub bootloader work with tf701t?
have you considered returning your tf701 and replacing it with the tf700 infinity? you can replace the OS with ubuntu.. theres much more support for that model than the tf701
tf701mega said:
have you considered returning your tf701 and replacing it with the tf700 infinity? you can replace the OS with ubuntu.. theres much more support for that model than the tf701
Click to expand...
Click to collapse
Out of curiosity, have you used the tf700t? it is good for development, but it could run pretty slow at times. It might of been because of the tegra 3 processor, because the tf300t also had this performance issue. I was barely able to type up documents on a CM Rom because the tablet would lag when typing out and would then force close and corrupt my document.
atleast for me, that was the reason why I went with this one rather than the tf700t. This is just my 2 cents about getting the tf700t. I would suggest trying it out before getting it.
Sent from my K00C using Tapatalk 2
Just how stubborn are you?
How much work do you want to put into this? There are two options, the easy route that you probably will consider imperfect, and the much more complicated route that I'm not certain will work. I'll do my best to explain both.
The method I use is to install a linux distro (in my case, ubuntu) inside a chroot. There are several apps on the android market to help you set this up. The one I used sets up an Xvnc server, so you can view your linux desktop by using an android VNC viewer -- but it's just connecting locally, not going over the network.
This works nicely out of the box, but it's slow, partly because it's using the VNC protocol and partly because there's no 2d hardware acceleration. I tinkered with my setup and installed XSDL, a native android X server with hardware acceleration. I had to modify the linux startup script to skip starting Xvnc and instead connect to XSDL (which is on :0.0 like a normal X server).
This works great and is fairly fast. For me, this is a good compromise between a full-fledged linux laptop and the convenience of android apps written specifically for a multitouch screen. I generally do most of my stuff in Android, but I can drop into my Ubuntu desktop whenever I need more power.
The really big downside is that it's hard to prevent Android's low-memory killer from sacrificing XSDL when I haven't used it for awhile. I've mucked about with various solutions involving oom_score_adj and such, and that helps, but android still ends up killing my X server sometimes.
So, that's the easy method. For the more complicated method, I'm just theorizing, and this stuff may not work. You're going to need to either already have somewhat deep linux knowledge or be willing to learn Here goes.
In this post, I described how I managed to boot my tf701t after the internal memory card died a horrible death. The important bit here is that I learned how to boot any initrd/kernel combination using fastboot, and how to roll that combination into a boot.img so that the tablet always boots it. This is what you'll need to do both for the installation and for future boots into your Linux install.
First off, choose your Linux distro. I don't think you'll be able to use Mint, since, as someone pointed out above, there's no ARM build of Mint. However, there is an ARM build of Debian and Mint has the "debian edition", so maybe there is an ARM version. It may be, though, that the Mint folks only built their special stuff (Cinnamon/mate/whatever) for x86 platforms. I'd recommend Ubuntu as a compromise since I know it runs on the tf701t.
For the initial installation, put the contents of the install ISO onto an SD card -- just copying your bootable USB drive over should work. Now for the tricky bit: you'll need to pull the kernel and initrd ("ramdisk", "initial ramdisk" -- usually initrd-<something>.gz) off of the usb drive and into a working directory on a Linux laptop or desktop (let's call it the "host"). You might get away with just fastbooting this kernel/ramdisk directly. Install the fastboot package for your distro (Ubuntu has one, anyway). Connect up your tablet, put it in fastboot mode (I think that's done by booting with volume up and down held) and do 'fastboot boot <your kernel> <your ramdisk>'.
This will boot the kernel and load up the initrd, which is a tiny little linux filesystem stored in memory. The kernel runs a program called init inside the ramdisk and init takes over and boots into the actual installer. The question in my mind is how it goes about finding the ISO contents. If it searches by filesystem UUID, and there's a good chance that it does, then it will find your the ISO contents on the SD card just fine and the installer will start up.
If not, well, things will get a lot more complicated. Normally what one would do in a case like this would be to pass kernel command-line arguments (you do this in the SYSLINUX bootloader for distros like Ubuntu) telling it where to find the installation media. We can't do that because fastboot doesn't let you pass command-line arguments. Instead, you'd need to extract the initrd on the Host machine, modify the init script in some way to tell it where to find the installation media (probably /dev/block/mmcblk1p1), and then repackage it. I went into somewhat shallow detail on how to do the extract/repackage parts of this, but this is where either prior linux knowledge or a willingness to do some research comes in. Hints: gunzip the initrd, then use the cpio tool to extract it.
Okay, so let's say that you get the installer booting. The next big question is whether it's going to work at all. In theory the graphics chip inside the tf701t is supported by linux, but in practice, maybe it's only supported by a kernel module that Samsung built. Maybe you'd need to substitute the stock kernel. The next question is whether X has a module that will work with the graphics chip. But maybe even if it doesn't you can use a text-mode installer. That would at least let you get a system installed that you could then hack on to try to get X running.
So, let's say you do get linux installed (probably onto the internal SD card, /dev/block/mmcblk0). Now you want to boot it. You'll need to look into the installed system and steal its kernel and ramdisk, and get them onto the Host machine. Or maybe you could just extract them from the debian packages, since I'm not sure how you'd get things off of that internal SD at this stage. As a hint, these may well NOT be the same kernel/initrd as in the installer.
Once you've got the kernel/ramdisk, you can try to boot into them with fastboot. If that works (big if), then you'll want to be able to boot them without fastboot. That's where the 'fastboot flash:raw' command comes in. It takes a kernel/ramdisk, builds an android boot.img out of them, and flashes it to the device. From then on, the device will boot that kernel and ramdisk by default.
So, in theory this could work. The biggest potential stumbling block is whether X is going to natively support the graphics chip. If it doesn't, you may be stuck using the basic framebuffer driver, or maybe that won't even work at all. ...or you could just settle for the chroot method and be done with it
Good luck. I'm very interested to hear whether this works. I'm probably not going to try it myself since I like Android enough that I want to keep it around. I also can't walk you through this in finer detail because of external limits on my time, but I'd be happy to answer theoretical questions and specific technical questions, so long as you're willing to do the legwork of reading manpages and such I hope this works out for you!
Oh, one thing just occurred to me: skip the part in the installer about installing grub. It's not going to work on this device and may cause problems. You'll take care of the bootloader part yourself with the fastboot flash:raw command.
Oh, I see there's already some decent progress in this thread. Also it looks like I totally missed the -c option in fastboot that lets you pass kernel command-line arguments... that'll definitely be a time-saver. Given what I see over in that thread, it looks like we may actually get a reasonable native linux on our TF701t. Not sure how far the OP has gotten on things like mouse/keyboard input, though.
I have to say, I'm pretty excited! It'd be super cool to be able to dual-boot native linux and android on this tablet. Best of both worlds.
lexelby said:
How much work do you want to put into this? There are two options, the easy route that you probably will consider imperfect, and the much more complicated route that I'm not certain will work. I'll do my best to explain both.
The method I use is to install a linux distro (in my case, ubuntu) inside a chroot. There are several apps on the android market to help you set this up. The one I used sets up an Xvnc server, so you can view your linux desktop by using an android VNC viewer -- but it's just connecting locally, not going over the network.
This works nicely out of the box, but it's slow, partly because it's using the VNC protocol and partly because there's no 2d hardware acceleration. I tinkered with my setup and installed XSDL, a native android X server with hardware acceleration. I had to modify the linux startup script to skip starting Xvnc and instead connect to XSDL (which is on :0.0 like a normal X server).
This works great and is fairly fast. For me, this is a good compromise between a full-fledged linux laptop and the convenience of android apps written specifically for a multitouch screen. I generally do most of my stuff in Android, but I can drop into my Ubuntu desktop whenever I need more power.
The really big downside is that it's hard to prevent Android's low-memory killer from sacrificing XSDL when I haven't used it for awhile. I've mucked about with various solutions involving oom_score_adj and such, and that helps, but android still ends up killing my X server sometimes.
So, that's the easy method. For the more complicated method, I'm just theorizing, and this stuff may not work. You're going to need to either already have somewhat deep linux knowledge or be willing to learn Here goes.
In this post, I described how I managed to boot my tf701t after the internal memory card died a horrible death. The important bit here is that I learned how to boot any initrd/kernel combination using fastboot, and how to roll that combination into a boot.img so that the tablet always boots it. This is what you'll need to do both for the installation and for future boots into your Linux install.
First off, choose your Linux distro. I don't think you'll be able to use Mint, since, as someone pointed out above, there's no ARM build of Mint. However, there is an ARM build of Debian and Mint has the "debian edition", so maybe there is an ARM version. It may be, though, that the Mint folks only built their special stuff (Cinnamon/mate/whatever) for x86 platforms. I'd recommend Ubuntu as a compromise since I know it runs on the tf701t.
For the initial installation, put the contents of the install ISO onto an SD card -- just copying your bootable USB drive over should work. Now for the tricky bit: you'll need to pull the kernel and initrd ("ramdisk", "initial ramdisk" -- usually initrd-<something>.gz) off of the usb drive and into a working directory on a Linux laptop or desktop (let's call it the "host"). You might get away with just fastbooting this kernel/ramdisk directly. Install the fastboot package for your distro (Ubuntu has one, anyway). Connect up your tablet, put it in fastboot mode (I think that's done by booting with volume up and down held) and do 'fastboot boot <your kernel> <your ramdisk>'.
This will boot the kernel and load up the initrd, which is a tiny little linux filesystem stored in memory. The kernel runs a program called init inside the ramdisk and init takes over and boots into the actual installer. The question in my mind is how it goes about finding the ISO contents. If it searches by filesystem UUID, and there's a good chance that it does, then it will find your the ISO contents on the SD card just fine and the installer will start up.
If not, well, things will get a lot more complicated. Normally what one would do in a case like this would be to pass kernel command-line arguments (you do this in the SYSLINUX bootloader for distros like Ubuntu) telling it where to find the installation media. We can't do that because fastboot doesn't let you pass command-line arguments. Instead, you'd need to extract the initrd on the Host machine, modify the init script in some way to tell it where to find the installation media (probably /dev/block/mmcblk1p1), and then repackage it. I went into somewhat shallow detail on how to do the extract/repackage parts of this, but this is where either prior linux knowledge or a willingness to do some research comes in. Hints: gunzip the initrd, then use the cpio tool to extract it.
Okay, so let's say that you get the installer booting. The next big question is whether it's going to work at all. In theory the graphics chip inside the tf701t is supported by linux, but in practice, maybe it's only supported by a kernel module that Samsung built. Maybe you'd need to substitute the stock kernel. The next question is whether X has a module that will work with the graphics chip. But maybe even if it doesn't you can use a text-mode installer. That would at least let you get a system installed that you could then hack on to try to get X running.
So, let's say you do get linux installed (probably onto the internal SD card, /dev/block/mmcblk0). Now you want to boot it. You'll need to look into the installed system and steal its kernel and ramdisk, and get them onto the Host machine. Or maybe you could just extract them from the debian packages, since I'm not sure how you'd get things off of that internal SD at this stage. As a hint, these may well NOT be the same kernel/initrd as in the installer.
Once you've got the kernel/ramdisk, you can try to boot into them with fastboot. If that works (big if), then you'll want to be able to boot them without fastboot. That's where the 'fastboot flash:raw' command comes in. It takes a kernel/ramdisk, builds an android boot.img out of them, and flashes it to the device. From then on, the device will boot that kernel and ramdisk by default.
So, in theory this could work. The biggest potential stumbling block is whether X is going to natively support the graphics chip. If it doesn't, you may be stuck using the basic framebuffer driver, or maybe that won't even work at all. ...or you could just settle for the chroot method and be done with it
Good luck. I'm very interested to hear whether this works. I'm probably not going to try it myself since I like Android enough that I want to keep it around. I also can't walk you through this in finer detail because of external limits on my time, but I'd be happy to answer theoretical questions and specific technical questions, so long as you're willing to do the legwork of reading manpages and such I hope this works out for you!
Oh, one thing just occurred to me: skip the part in the installer about installing grub. It's not going to work on this device and may cause problems. You'll take care of the bootloader part yourself with the fastboot flash:raw command.
Click to expand...
Click to collapse
Very stubborn
Sorry I didn't respond sooner as I was away with family for Christmas.
Thank you for the guide, it was extremely helpful. I am still working on getting the device ready so I'll update as I progress.
Thanks again

Categories

Resources